Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Vet Rec ; 192(2): 82, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2291379
2.
J Am Vet Med Assoc ; 261(7): 1045-1053, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2270116

ABSTRACT

OBJECTIVE: To provide epidemiological information on the occurrence of animal and human rabies in the US during 2021 and summaries of 2021 rabies surveillance for Canada and Mexico. PROCEDURES: State and territorial public health departments and USDA Wildlife Services provided data on animals submitted for rabies testing in 2021. Data were analyzed temporally and geographically to assess trends in domestic animal and wildlife rabies cases. RESULTS: During 2021, 54 US jurisdictions reported 3,663 rabid animals, representing an 18.2% decrease from the 4,479 cases reported in 2020. Texas (n = 456 [12.4%]), Virginia (297 [8.1%]), Pennsylvania (287 [7.8%]), North Carolina (248 [6.8%]), New York (237 [6.5%]), California (220 [6.0%]), and New Jersey (201 [5.5%]) together accounted for > 50% of all animal rabies cases reported in 2021. Of the total reported rabid animals, 3,352 (91.5%) involved wildlife, with bats (n = 1,241 [33.9%]), raccoons (1,030 [28.1%]), skunks (691 [18.9%]), and foxes (314 [8.6%]) representing the primary hosts confirmed with rabies. Rabid cats (216 [5.9%]), cattle (40 [1.1%]), and dogs (36 [1.0%]) accounted for 94% of rabies cases involving domestic animals in 2021. Five human rabies deaths were reported in 2021. CLINICAL RELEVANCE: The number of animal rabies cases reported in the US decreased significantly during 2021; this is thought to be due to factors related to the COVID-19 pandemic.


Subject(s)
COVID-19 , Cat Diseases , Cattle Diseases , Chiroptera , Dog Diseases , Rabies , Animals , Cats , Cattle , Dogs , Humans , Animals, Domestic , Animals, Wild , Cat Diseases/epidemiology , Cattle Diseases/epidemiology , COVID-19/epidemiology , COVID-19/veterinary , Dog Diseases/epidemiology , Foxes , Mephitidae , New York , Pandemics , Population Surveillance , Rabies/epidemiology , Rabies/veterinary , Raccoons , United States/epidemiology
3.
J Am Vet Med Assoc ; 261(4): 592-596, 2022 12 07.
Article in English | MEDLINE | ID: covidwho-2250957

ABSTRACT

Rabies is the deadliest viral infection known, with no reliable treatment, and although it is entirely preventable, rabies continues to kill more than 60,000 people every year, mostly children in countries where dog rabies is endemic. America is only 1 generation away from the time when rabies killed more than 10,000 animals and 50 Americans every year, but 3 to 5 Americans continue to die annually from rabies. Distressingly, > 50,000 Americans undergo rabies prevention therapy every year after exposure to potentially rabid animals. While enormous progress has been made, more must be done to defeat this ancient but persistent, fatal zoonosis. In the US, lack of public awareness and ambivalence are the greatest dangers imposed by rabies, resulting in unnecessary exposures, anxiety, and risk. Veterinarians have a special role in informing and reassuring the public about prevention and protection from rabies. This summary of current facts and future advances about rabies will assist veterinarians in informing their clients about the disease.


Subject(s)
Dog Diseases , Rabies Vaccines , Rabies , Veterinarians , Animals , Dogs , Humans , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Zoonoses , Anxiety , Anxiety Disorders , Rabies Vaccines/therapeutic use , Dog Diseases/prevention & control , Dog Diseases/epidemiology
4.
Viruses ; 14(11)2022 Oct 22.
Article in English | MEDLINE | ID: covidwho-2113164

ABSTRACT

Spatial expansions of vampire bat-transmitted rabies (VBR) are increasing the risk of lethal infections in livestock and humans in Latin America. Identifying the drivers of these expansions could improve current approaches to surveillance and prevention. We aimed to identify if VBR spatial expansions are occurring in Colombia and test factors associated with these expansions. We analyzed 2336 VBR outbreaks in livestock reported to the National Animal Health Agency (Instituto Colombiano Agropecuario-ICA) affecting 297 municipalities from 2000-2019. The area affected by VBR changed through time and was correlated to the reported number of outbreaks each year. Consistent with spatial expansions, some municipalities reported VBR outbreaks for the first time each year and nearly half of the estimated infected area in 2010-2019 did not report outbreaks in the previous decade. However, the number of newly infected municipalities decreased between 2000-2019, suggesting decelerating spatial expansions. Municipalities infected later had lower cattle populations and were located further from the local reporting offices of the ICA. Reducing the VBR burden in Colombia requires improving vaccination coverage in both endemic and newly infected areas while improving surveillance capacity in increasingly remote areas with lower cattle populations where rabies is emerging.


Subject(s)
Chiroptera , Rabies virus , Rabies , Animals , Cattle , Humans , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Colombia/epidemiology , Livestock
5.
Front Public Health ; 10: 854419, 2022.
Article in English | MEDLINE | ID: covidwho-1834651

ABSTRACT

Human deaths from rabies are preventable and can be eliminated by applying a systematic One Health approach. However, this ancient disease still threatens the lives of millions of people in up to 150 countries and kills an estimated 59, 000 people every year. Rabies today is largely a disease of poverty, almost always linked to dog bites, with most deaths occurring in neglected communities in Africa and Asia. The disease places an immense economic burden on its victims, a cost that far outweighs the investment needed to control it. A global framework for rabies elimination in humans is set out in Zero by 30: The Global Strategic Plan to end human deaths from dog-mediated rabies by 2030. Despite the existence of proven control strategies and agreement on the path to eliminating human rabies deaths, mortality numbers from rabies remain high, and COVID-19 has set back efforts even further. But COVID-19 has also highlighted the value of a One Health approach to zoonotic disease and pandemic prevention. Rabies control programs offer a practical route to building One Health capacities that can also address other zoonotic threats, including those with pandemic potential. The United Against Rabies Forum aims to accelerate progress on rabies elimination while applying a One Health approach. The Forum promotes cross-sector collaboration among stakeholders and supports countries in their rabies elimination efforts. Increased political engagement and resource mobilization, both internationally and nationally, will be needed to achieve global rabies goals and can also make One Health implementation a reality.


Subject(s)
COVID-19 , Dog Diseases , One Health , Rabies , Animals , COVID-19/epidemiology , COVID-19/prevention & control , Dog Diseases/prevention & control , Dogs , Humans , Rabies/prevention & control , Rabies/veterinary , Zoonoses/prevention & control
6.
J Am Vet Med Assoc ; 260(10): 1157-1165, 2022 05 05.
Article in English | MEDLINE | ID: covidwho-1834225

ABSTRACT

OBJECTIVE: To provide epidemiological information on animal and human cases of rabies in the US during 2020 and summaries of 2020 rabies surveillance for Canada and Mexico. ANIMALS: All animals submitted for laboratory diagnosis of rabies in the US during 2020. PROCEDURES: State and territorial public health departments and USDA Wildlife Services provided 2020 rabies surveillance data. Data were analyzed temporally and geographically to assess trends in domestic and wildlife rabies cases. RESULTS: During 2020, 54 jurisdictions submitted 87,895 animal samples for rabies testing, of which 85,483 (97.3%) had a conclusive (positive or negative) test result. Of these, 4,479 (5.2%) tested positive for rabies, representing a 4.5% decrease from the 4,690 cases reported in 2019. Texas (n = 580 [12.9%]), Pennsylvania (371 [8.3%]), Virginia (351 [7.8%]), New York (346 [7.7%]), North Carolina (301 [6.7%]), New Jersey (257 [5.7%]), Maryland (256 [5.7%]), and California (248 [5.5%]) together accounted for > 60% of all animal rabies cases reported in 2020. Of the total reported rabid animals, 4,090 (91.3%) involved wildlife, with raccoons (n = 1,403 [31.3%]), bats (1,400 [31.3%]), skunks (846 [18.9%]), and foxes (338 [7.5%]) representing the primary hosts confirmed with rabies. Rabid cats (288 [6.4%]), cattle (43 [1.0%]), and dogs (37 [0.8%]) accounted for 95% of rabies cases involving domestic animals in 2020. No human rabies cases were reported in 2020. CONCLUSIONS AND CLINICAL RELEVANCE: For the first time since 2006, the number of samples submitted for rabies testing in the US was < 90,000; this is thought to be due to factors related to the COVID-19 pandemic, as similar decreases in sample submission were also reported by Canada and Mexico.


Subject(s)
COVID-19 , Cat Diseases , Cattle Diseases , Chiroptera , Dog Diseases , Rabies , Cats , Dogs , Animals , United States , Cattle , Humans , Rabies/epidemiology , Rabies/veterinary , Animals, Domestic , Pandemics , Cat Diseases/epidemiology , Dog Diseases/epidemiology , Cattle Diseases/epidemiology , Equidae , Population Surveillance , COVID-19/veterinary , Raccoons , Mephitidae , Animals, Wild , Foxes , New York
7.
Front Public Health ; 10: 769898, 2022.
Article in English | MEDLINE | ID: covidwho-1775977

ABSTRACT

Background: In Africa, rabies causes an estimated 24,000 human deaths annually. Mass dog vaccinations coupled with timely post-exposure prophylaxis (PEP) for dog-bite patients are the main interventions to eliminate human rabies deaths. A well-informed healthcare workforce and the availability and accessibility of rabies biologicals at health facilities are critical in reducing rabies deaths. We assessed awareness and knowledge regarding rabies and the management of rabies among healthcare workers, and PEP availability in rural eastern Kenya. Methodology: We interviewed 73 healthcare workers from 42 healthcare units in 13 wards in Makueni and Kibwezi West sub-counties, Makueni County, Kenya in November 2018. Data on demographics, years of work experience, knowledge of rabies, management of bite and rabies patients, and availability of rabies biologicals were collected and analyzed. Results: Rabies PEP vaccines were available in only 5 (12%) of 42 health facilities. None of the health facilities had rabies immunoglobulins in stock at the time of the study. PEP was primarily administered intramuscularly, with only 11% (n = 8) of the healthcare workers and 17% (7/42) healthcare facilities aware of the dose-sparing intradermal route. Less than a quarter of the healthcare workers were aware of the World Health Organization categorization of bite wounds that guides the use of PEP. Eighteen percent (n = 13) of healthcare workers reported they would administer PEP for category I exposures even though PEP is not recommended for this category of exposure. Only one of six respondents with acute encephalitis consultation considered rabies as a differential diagnosis highlighting the low index of suspicion for rabies. Conclusion: The availability and use of PEP for rabies was sub-optimal. We identified two urgent needs to support rabies elimination programmes: improving availability and access to PEP; and targeted training of the healthcare workers to improve awareness on bite wound management, judicious use of PEP including appropriate risk assessment following bites and the use of the dose-sparing intradermal route in facilities seeing multiple bite patients. Global and domestic funding plan that address these gaps in the human health sector is needed for efficient rabies elimination in Africa.


Subject(s)
Disease Eradication , Health Services Needs and Demand , Rabies , Rural Health , Animals , Bites and Stings/therapy , Disease Eradication/methods , Disease Eradication/organization & administration , Dog Diseases/prevention & control , Dog Diseases/virology , Dogs , Health Knowledge, Attitudes, Practice , Health Personnel/psychology , Humans , Kenya/epidemiology , Mass Vaccination/veterinary , Post-Exposure Prophylaxis/supply & distribution , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Rabies Vaccines/supply & distribution
8.
Comp Immunol Microbiol Infect Dis ; 86: 101803, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1767978

ABSTRACT

In many countries, vaccination programs still require dogs to be vaccinated against rabies in addition to Canine distemper virus (CDV), adenovirus (CAV), parvovirus (CPV), parainfluenza virus (CPiV), Leptospira (L) or Canine coronavirus (CCV= Cv). Few vaccines containing all these antigens are commercially available and, unless compatibility between the vaccines was demonstrated, concurrent administration of a DAPPi-L(Cv) vaccine and a vaccine against rabies should not be recommended. This may be of concern for practitioners who wish to vaccinate dogs with all components on the same day. This study aimed at evaluating immunological compatibility between a monovalent rabies vaccine (Rabisin™) and two large combination vaccines against CDV, CAV, CPV, CPiV with 2 leptospira components +Cv (Recombitek® C6/Cv) or with 4 Leptospira components (Recombitek® C8), when injected concomitantly at two separate injection sites. Fourteen days after administration of the rabies vaccine, with or without concomitant administration of combo vaccines, all dogs had seroconverted against rabies and maintained protective titers over the duration of the study. In addition, 100% of the puppies vaccinated with one or the other combo vaccines seroconverted against CDV, CAV, CPV, CPiV (CCV) and Leptospira, whatever the vaccination group. Lack of immunological interference between Rabisin™ and all components of the Recombitek® C6/Cv or Recombitek® C8 Combo vaccines was demonstrated by non-inferiority analysis, except for CDV in the Recombitek®C8+ Rabisin™ group. Based on these results, a concomitant administration of Rabisin™ with Recombitek® C6/Cv or Recombitek® C8 can be recommended in daily practice, which can be essential for facilitating vaccination compliance.


Subject(s)
Coronavirus, Canine , Distemper Virus, Canine , Distemper , Dog Diseases , Leptospira , Leptospirosis , Parvovirus, Canine , Rabies Vaccines , Rabies , Viral Vaccines , Animals , Antibodies, Viral , Distemper/prevention & control , Dogs , Leptospirosis/veterinary , Rabies/prevention & control , Rabies/veterinary , Vaccines, Combined
9.
Viruses ; 14(3)2022 02 28.
Article in English | MEDLINE | ID: covidwho-1765945

ABSTRACT

Accurate host identification is paramount to understand disease epidemiology and to apply appropriate control measures. This is especially important for multi-host pathogens such as the rabies virus, a major and almost invariably fatal zoonosis that has mobilized unanimous engagement at an international level towards the final goal of zero human deaths due to canine rabies. Currently, diagnostic laboratories implement a standardized identification using taxonomic keys. However, this method is challenged by high and undiscovered biodiversity, decomposition of carcasses and subjective misevaluation, as has been attested to by findings from a cohort of 242 archived specimens collected across Sub-Saharan Africa and submitted for rabies diagnosis. We applied two simple and cheap methods targeting the Cytochrome b and Cytochrome c oxidase subunit I to confirm the initial classification. We therefore suggest prioritizing a standardized protocol that includes, as a first step, the implementation of taxonomic keys at a family or subfamily level, followed by the molecular characterization of the host species.


Subject(s)
Dog Diseases , Rabies virus , Rabies , Africa South of the Sahara , Animals , Dog Diseases/diagnosis , Dog Diseases/epidemiology , Dog Diseases/prevention & control , Dogs , Humans , Laboratories , Rabies/epidemiology , Rabies/prevention & control , Rabies/veterinary , Zoonoses/epidemiology , Zoonoses/prevention & control
10.
PLoS One ; 17(1): e0261344, 2022.
Article in English | MEDLINE | ID: covidwho-1602770

ABSTRACT

With more than 1400 chiropteran species identified to date, bats comprise one-fifth of all mammalian species worldwide. Many studies have associated viral zoonoses with 45 different species of bats in the EU, which cluster within 5 families of bats. For example, the Serotine bats are infected by European Bat 1 Lyssavirus throughout Europe while Myotis bats are shown infected by coronavirus, herpesvirus and paramyxovirus. Correct host species identification is important to increase our knowledge of the ecology and evolutionary pattern of bat viruses in the EU. Bat species identification is commonly determined using morphological keys. Morphological determination of bat species from bat carcasses can be limited in some cases, due to the state of decomposition or nearly indistinguishable morphological features in juvenile bats and can lead to misidentifications. The overall objective of our study was to identify insectivorous bat species using molecular biology tools with the amplification of the partial cytochrome b gene of mitochondrial DNA. Two types of samples were tested in this study, bat wing punches and bat faeces. A total of 163 bat wing punches representing 22 species, and 31 faecal pellets representing 7 species were included in the study. From the 163 bat wing punches tested, a total of 159 were genetically identified from amplification of the partial cyt b gene. All 31 faecal pellets were genetically identified based on the cyt b gene. A comparison between morphological and genetic determination showed 21 misidentifications from the 163 wing punches, representing ~12.5% of misidentifications of morphological determination compared with the genetic method, across 11 species. In addition, genetic determination allowed the identification of 24 out of 25 morphologically non-determined bat samples. Our findings demonstrate the importance of a genetic approach as an efficient and reliable method to identify bat species precisely.


Subject(s)
Chiroptera/classification , Chiroptera/genetics , DNA, Mitochondrial/analysis , Animals , Epidemiological Monitoring , Feces/chemistry , France , Rabies/veterinary , Wings, Animal/chemistry , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL